

table of contents

1. Introduction...3

2. Project scope... 4

3. Testing strategy.. 4

4. Test plan.. 5

5. Quality metrics...6

6. Risk management.. 6

6.1 Risk management in our project... 6

6.2 Risk matrix... 7

6.2.1 Risk matrix.. 7

6.2.2 Previous risks that we had..8

7. Communication plan.. 10

8. Roles and responsibilities...10

8.1 Quality Assurance Responsibilities.. 10

8.2 Documents.. 11

8.3 Document Control-Procedure... 11

8.4 Review Process.. 12

8.5 Usability...12

8.6 Code Functionality...12

9. Timeline...12

9.1 Sprint Quality Assurance Schedule..12

9.2 Schedule for permanent manual tests..13
9.3 Milestones and Deadlines for Testing Phases..13

10. Glossary... 14

11. List of tables...14

12. List of images... 15

2

1. Introduction

The software development project is a project semester for computer science students in their 4th
term at Mannheim University of Applied Sciences. Groups of six students are formed to develop a
software product for an external client according to requirements over the course of the term.
The task is to optimise the user interface (UI) of the prototypes created by Cody using LLMs in
order to make the product more appealing to clients.

To this end, the plan is to actively involve future end users in the design process of the website.
This is initially done with a questionnaire, from which the information for a prompt is taken in
order to let the AI generate the first "basic page". Further specific customisations can then be
made by using an AI-chatbot.
In this way, we aim to create an agile and efficient development environment that allows us to
respond flexibly to the needs of the end users and deliver innovative solutions.

As part of the software development project in the summer term 2024, bitExpert AG was chosen
as the client.
bitExpert AG is a company based in Mannheim with over 60 employees and is designed to develop
digital solutions for different companies.

Specific must-requirements
● The website created must offer an improved user experience (UX) compared to the website

generated by Cody. This includes an appealing design, intuitive user guidance and efficient
functionality.

● The LLM must be fully compatible with Node.js and React.js to ensure seamless integration
into the development environment.

● The chatbot should be able to edit the website live and provide direct feedback. This means
that users can make changes in real time while the AI provides immediate visual feedback.
This feature enables efficient collaboration between developers and designers as well as
faster iteration and customisation of the web design.

● If the user has made a change using the chatbot, they can undo this using a button.

Specific nice-to-have-requirement
● The created UI prototype can be exported in different formats to be used for presentations

or other development phases.

(Information 1: The words in italics are described in more detail in a glossary, which can be found
on page 14)
(Information 2: The texts marked in turquoise are the adjustments based on Mr Baker's feedback:
See 9.2 Schedule for permanent manual tests and 10 Glossary)

3

2. Project scope

Image 1: Use-case-diagram

Use of open source LLMs
Only open source LLMs may be used for the project.
Since proprietary LLMs are chargeable, BitExpert decides against making them available.

Use of the Cody backend
Only the backend of the Cody Engine may be used for the project
In order to obtain the same functionality as the website created by the Cody Engine, the backend
of the Cody Engine, which was written in TypeScript, must be used.

3. Testing strategy

Functional testing
Each function is tested.

Initially, the feature to be tested is identified. Then, the initial state, if present or relevant, is

determined. After the test inputs are provided, it is verified whether the expected result has been

achieved and whether the expected final state, if applicable, has occurred.

4

User acceptance testing
During each client meeting, the software application is presented to the client. Subsequently, the

client communicates their requirements and suggestions for enhancements to us. This process

ensures that the client remains informed of the continuous progress. Additionally, it serves the

purpose of managing the client's expectations realistically and facilitates direct feedback on the

product.

4. Test plan
Automated testing is not needed because of permanent manual testing in the development.
Further errors are displayed in the frontend of the product.

ID Test Name Description Success Criteria

T01 Forest-Template
Select the “Forest-Template”
and click on “generate”

The “Forest-template” is used on
the generated website

T02 Chatbot-response
Prompt the chatbot to change
the website

The chatbot responds and the
website changes

T03
Template
Selection

Test if the template selection
page opens when the
"cody-play" button is pressed

The template selection page opens

T04 Ollama-API offline
Verify if an error message is
displayed when the Ollama API
is unreachable

An error message appears
indicating API failure

T05 Undo Button Click on the “undo”-button The previous page is restored

T06 Redo Button
Click on the “undo”-button,
then click on the “redo”-button

The previous page is restored

T07 Functionality
Test the “add
book”-cody-function

A book appears in the book list

T08 Security

Enter the following JavaScript
code into the chatbot: <script>
alert(“cross-site-scripting
detected”);
</script>

No alert is displayed

T09 Colours
Select the colour “green” on
the selection-site

The generated website primarily
appears green

5

T10
Cross-Browser
Compatibility

Test the application on
Chrome, Firefox and Safari

Application functions correctly in
all tested browsers

Table 1: Quality objectives

5. Quality metrics

Our product must fulfil the following quality criteria for bitExpert.

Quality objectives Description

Reliability The system should perform its functions reliably and error-free
to provide a consistent and stable user experience.

Changeability/Maintainability The system should respond to improvements, corrections,
and extensions in a customisable manner.

Efficiency The software should have a maximum loading time of 15
seconds to display the desired result
and should run smoothly without errors occurring.

Compatibility The system should work on the four most commonly used
browsers, with the percentages representing the market share
of the browsers (as of May 2024) Google Chrome (43.25%),
Safari (42.59%), Firefox (7.08%), Edge (6.07%). It should be
ensured that all functions and content are displayed correctly
and run without errors.
(Source)

Table 2: Quality objectives

6. Risk management

6.1 Risk management in our project
In order to optimise risk management, potential risks in various activities are mainly
identified in the weekly sprint planning meetings and during the sprint.

6

https://www.stetic.com/de/market-share/browser/

These are discussed and recorded in the team. Our risk management works as follows:

● Risk identification: our daily Meetings provide an opportunity to address new risks
and assess them.

● Risk assessment: Risks are prioritised based on their likelihood and potential
impact. The team estimates the impact and likelihood of occurrence for the
identified risks.

● Risk planning: For each identified risk, the team develops strategies for risk defence
or risk mitigation.

6.2 Risk matrix

6.2.1 Risk matrix

The risk matrix is used to measure the extent to which the risk affects the project.

 Image 2: Risk matrix

Amount of damage in person hours:
● 1-10 h: The amount of damage is minimal and hardly noticeable
● 10-20 h: The risk is noticeable due to the amount of damage, but it is not significant
● 20-40 h: The risk is decisive for the further course of the project.

7

● 40-80 h: The risk has a serious impact on the course of the project and has consequences
for the quality of the product

Probability of occurrence in percent:
● 0 < 25: It is highly unlikely that the risk will occur.
● 25 <= 49: The risk is unlikely to occur.
● 50 <= 75: The risk is likely to occur.
● 75 < 100: It is assumed that the risk will occur.

6.2.2 Previous risks that we had

The following three risks were most significant in the project so far.

1. Risk from 24.04.24:
Processing time of prompts that
are too long

Image 3: Risk matrix from 24.04.24

8

2. Risk from 08.05.24:
Failure of the home server (Ollama as
server application)

Image 4: Risk matrix from 08.05.24

3. Risk from 29.05.24
AI does not provide reliable output
for complex website templates

Image 5: Risk matrix from 29.05.24

9

7. Communication plan

Image 6: Communication plan

8. Roles and responsibilities

8.1 Quality Assurance Responsibilities
There are two people mainly responsible for quality assurance:

● Zehra-Fikriye Gönenç
● Philipp Wäsch

10

Basic Principle
The document or parts of the document must only be checked and approved by a team member
who was not involved in their creation.

Exceptions
Other team members will be deployed if a deadline is imminent and it is not possible for one of
the above-mentioned persons to review the document in time. Another team member can review
the document if they have the necessary expertise and were not involved in the creation of the
document.

8.2 Documents
Code Guidelines

● Responsible: Philipp Wäsch
● Before each review, the code is checked and adjusted according to the code guidelines.

Checklists

● Responsible: Zehra-Fikriye Gönenç
● To systematically review documents and quickly provide a basis for other team members to

check documents, we have created checklists. This ensures that criteria are not forgotten
and that documents are consistently reviewed based on the defined criteria.

8.3 Document Control-Procedure

1. Content Review: Initially, documents are checked for content.
2. Checklist Review: Subsequently, documents are reviewed using checklists covering aspects

such as spelling, grammar, formatting, and other criteria. Presentations are evaluated
based on different criteria compared to other documents. Each document has its own
checklist with specific review criteria.

3. Discussion of Changes: Changes are noted and discussed with the team member who
created the document.

Uploading Documents
Once the responsible person has finally reviewed and approved the document, they upload it to
Moodle and the MaviKedi Website.

11

8.4 Review Process
During each review, the product is to be presented in its current state. The team member
responsible for the technical part of the review records a video of the product to show it in case of
a system failure. Another team member responsible for the non-technical part of the review
checks the required equipment for the presentation, such as the projector. Both presenters
practise the presentation together at least once.

8.5 Usability
Usability is evaluated through questionnaires, for which Philipp Wäsch is responsible. Additionally,
we test usability using techniques like the "think-aloud" method. Each team member has two
independent persons, who do not have computer science knowledge, testing the product.

8.6 Code Functionality
Johannes Moseler is responsible for ensuring that the product functions as it should. Each new
piece of completed code undergoes a code review in the form of a walkthrough with Colin Zenner.
To avoid errors, pair programming is used when necessary.

9. Timeline

9.1 Sprint Quality Assurance Schedule

In each sprint, the product is further developed and the increment is integrated into the system.
The QA schedule includes the following steps:

1. Integration testing and system testing
● Each increment is initially tested for its functionality. Once verified, it is integrated

into the existing system and tested again to ensure seamless integration with the
current codebase. Finally, the entire system undergoes testing to confirm that all
components work together harmoniously and that the overall functionality is
preserved.

2. Documentation Review
● Alongside technical testing, all relevant documents (see Roles and Responsibilities)

are reviewed and updated.

3. Client Review
● The product is presented to the client in regular meetings to ensure the project is

on the right track and that changes meet the client's requirements.

12

9.2 Schedule for permanent manual tests

Automated testing is not needed because of permanent manual testing in the development. For
the specific test that we check, see the test plan.

When do we conduct manual testing?

1. Management Reviews
● When: Tuesdays, in an interval of two weeks, before every management review

2. Client reviews
● When: Every Wednesday, one day before client reviews

3. git-merge
● We also always test manually when a team member makes changes to the code and has

"merged" them.
● When: Whenever a modification is made

4. Final Presentation
● When: 24/06/2024, one week before the final presentation

9.3 Milestones and Deadlines for Testing Phases

1. Role Assignment, Tool Setup, and Team Training

● Period: 10/04/2024 - 16/04/2024
● Activities: Define team roles, set up necessary tools, and train team members on these

tools.

2. Project Handbook and Requirements Specification

● Deadline: 23/04/2024
● Activities: Create the project handbook and requirements specification and complete the

first version of the prototype.

3. Prototype Version 2

● Deadline: 07/05/2024

13

● Activities: Revise and improve the first prototype based on initial feedback rounds and
internal tests.

4. Architecture Documentation Version 1

● Deadline: 14/05/2024
● Activities: Create the first version of the architecture documentation, detailing the system

structure and technical specifics.

5. Template Testing

● Deadline: 28/05/2024
● Activities: Test the created templates for functionality and adaptability to various use cases.

7. Evaluate Usability Questionnaires

● Deadline: 10/06/2024
● Activities: Analyse and evaluate the collected usability data to derive concrete

improvement suggestions.

8. Final System Test and Product Delivery

● Date: 28/06/2024
● Activities: Conduct the final system test to ensure the entire system functions correctly and

meets the requirements. Final presentation and handover of the product to the client.

10. Glossary

Concept Description

Cody Cody is a bot or agent that is able to translate an event map
design into working software.

git-merge The git merge command is used to merge the changes from
another branch into the current branch. This merges the
development branches in order to integrate the work and
achieve a standardised status. If conflicts occur, these must be
resolved manually before the merge can be completed.

14

Git Git is a distributed version control system that tracks versions of
files. It is often used to control source code by programmers
collaboratively developing software. (source)

LLM A Large Language Model, or LLM for short, is a language model
that is characterised by its ability to generate unspecific texts.
(source)

Ollama Ollama is an AI tool designed to help with the local execution of
large language models. With Ollama, you can easily customise
and create language models.

Scrum Scrum is a process model for project and product management,
especially for agile software development. (source)

TypeScript TypeScript is a scripting language.

 Table 3: Glossary

11. List of tables
Table 1: Quality objectives 5-6
Table 2: Quality metrics 6
Table 3: Glossary 14-15

12. List of images
Image 1: Use-case-diagram 4
Image 2: Risk matrix 7
Image 3: Risk matrix from 24.04.24 8
Image 4: Risk matrix from 08.05.24 9
Image 5: Risk matrix from 29.05.24 9
Image 6: Communication plan 10

15

https://en.wikipedia.org/wiki/Distributed_version_control
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Large_language_model
https://de.wikipedia.org/wiki/Scrum

